Advertisements
Advertisements
प्रश्न
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
विकल्प
3
2
1
0
उत्तर
The number of arbitrary constants in the particular solution of a differential equation of third order are 0.
Explanation:
In the particular solution of a third-order differential equation, there is no arbitrary constant.
APPEARS IN
संबंधित प्रश्न
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Solution of differential equation xdy – ydx = 0 represents : ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Which of the following differential equations has `y = x` as one of its particular solution?
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.