हिंदी

Solution of differential equation xdy – ydx = 0 represents : ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Solution of differential equation xdy – ydx = 0 represents : ______.

विकल्प

  • A rectangular hyperbola

  • Parabola whose vertex is at origin

  • Straight line passing through origin

  • A circle whose centre is at origin

MCQ
रिक्त स्थान भरें

उत्तर

Solution of differential equation xdy – ydx = 0 represents : straight line passing through origin.

Explanation:

The given differential equation is xdy – ydx = 0

⇒ `("d"y)/("d"x) = y/x`

⇒ `("d"y)/y = ("d"x)/x`

Integrating both sides, we get

`int ("d"y)/y = ("d"x)/x`

⇒ log y = log x + log c

⇒ log y = log xc

⇒ y = xc

Which is a straight line passing through the origin.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 39 | पृष्ठ १९६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


Find the differential equation of all non-horizontal lines in a plane.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×