Advertisements
Advertisements
प्रश्न
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
उत्तर
According to the question,
\[\frac{dy}{dx} = x + xy\]
\[ \Rightarrow \frac{dy}{dx} = x\left( 1 + y \right)\]
\[ \Rightarrow \frac{1}{y + 1}dy = x dx\]
Integrating both sides, we get
\[\int\frac{1}{y + 1}dy = \int x dx\]
\[ \Rightarrow \log \left| y + 1 \right| = \frac{x^2}{2} + \log C\]
\[ \Rightarrow \log \left| \frac{y + 1}{C} \right| = \frac{x^2}{2}\]
\[ \Rightarrow y + 1 = C e^\frac{x^2}{2} \]
Since, the curve passes through (0, 1)
It satisfies the equation of the curve.
\[ \therefore 1 + 1 = C e^0 \]
\[ \Rightarrow C = 2\]
Puting the value of `C` in the equation of the curve, We get
\[ y + 1 = 2 e^\frac{x^2}{2} \]
\[ \Rightarrow y = - 1 + 2 e^\frac{x^2}{2}\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
x (e2y − 1) dy + (x2 − 1) ey dx = 0
cos (x + y) dy = dx
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
(x2 + 1) dy + (2y − 1) dx = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + y = 4x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Find the general solution of `"dy"/"dx" + "a"y` = emx
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`