Advertisements
Advertisements
प्रश्न
x (e2y − 1) dy + (x2 − 1) ey dx = 0
उत्तर
We have,
\[x\left( e^{2y} - 1 \right)dy + \left( x^2 - 1 \right) e^y dx = 0\]
\[ \Rightarrow x\left( e^{2y} - 1 \right)dy = \left( 1 - x^2 \right) e^y dx\]
\[ \Rightarrow \left( \frac{e^{2y} - 1}{e^y} \right)dy = \left( \frac{1 - x^2}{x} \right)dx\]
\[ \Rightarrow \left( e^y - e^{- y} \right)dy = \left( \frac{1}{x} - x \right)dx\]
Integrating both sides, we get
\[\int\left( e^y - e^{- y} \right)dy = \int\left( \frac{1}{x} - x \right)dx\]
\[ \Rightarrow e^y + e^{- y} = \log \left| x \right| - \frac{1}{2} x^2 + C\]
\[ \Rightarrow e^y + e^{- y} - \log \left| x \right| + \frac{1}{2} x^2 = C\]
APPEARS IN
संबंधित प्रश्न
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The number of arbitrary constants in the general solution of differential equation of fourth order is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
(x + y − 1) dy = (x + y) dx
(1 + y + x2 y) dx + (x + x3) dy = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + y = 4x\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0