Advertisements
Advertisements
प्रश्न
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
उत्तर
We have, y = Ax ...(1)
Differentiating (1) w.r.t.x, we get,
y' = A ...(2)
Dividing (2) by (1), we get
`(y')/y = 1/x`
⇒ xy' = y
Hence, y = Ax is a solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
(x2 + 1) dy + (2y − 1) dx = 0
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Solution of differential equation xdy – ydx = 0 represents : ______.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.