Advertisements
Advertisements
प्रश्न
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
विकल्प
y = (Ax + B)ex
y = (Ax + B)e–x
y = Aex + Be–x
y = Acosx + Bsinx
उत्तर
y = (Ax + B)ex
Explanation:
The given differential equation is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0
Since the above equation is of second order and first degree
∴ `"D"^2y - 2"D"y + y` = 0
Where D = `"d"/("d"x)`
⇒ `("D"^2 - 2"D" + 1)y` = 0
∴ Auxiliary equation is m2 – 2m + 1 = 0
⇒ (m – 1)2 = 0
⇒ m = 1, 1
If the roots of Auxiliary equation are real and equal say (m)
Then CF = `("c"_1 + "c"_2) . "e"^(mx)`
∴ CF = `("A"x + "B")"e"^x`
So y = `("A"x + "B")."e"^x`
APPEARS IN
संबंधित प्रश्न
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
Solution of differential equation xdy – ydx = 0 represents : ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`