हिंदी

Which of the following is the general solution of ddddd2ydx2-2dydx+y = 0? - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?

विकल्प

  • y = (Ax + B)ex

  • y = (Ax + B)e–x

  • y = Aex + Be–x

  • y = Acosx + Bsinx

MCQ

उत्तर

y = (Ax + B)e

Explanation:

The given differential equation is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0

Since the above equation is of second order and first degree

∴ `"D"^2y - 2"D"y + y` = 0

Where D = `"d"/("d"x)`

⇒ `("D"^2 - 2"D" + 1)y` = 0

∴ Auxiliary equation is m2 – 2m + 1 = 0

⇒ (m – 1)2 = 0

⇒ m = 1, 1

If the roots of Auxiliary equation are real and equal say (m)

Then CF = `("c"_1 + "c"_2) . "e"^(mx)`

∴ CF = `("A"x + "B")"e"^x`

So y = `("A"x + "B")."e"^x`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ २००]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 70 | पृष्ठ २००

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} + 1 = e^{x + y}\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


Solution of differential equation xdy – ydx = 0 represents : ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×