Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
उत्तर
We have
\[\left( 1 + y^2 \right) +\left( x - e^{\tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
\[ \Rightarrow \left( x - e^{\tan^{- 1} y} \right)\frac{dy}{dx} = - \left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{\left( 1 + y^2 \right)}{\left( x - e^{\tan^{- 1} y} \right)}\]
\[ \Rightarrow \frac{dx}{dy} = - \frac{x - e^{\tan^{- 1}} y}{1 + y^2}\]
\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{\tan^{- 1}} y}{1 + y^2} . . . . . \left( 1 \right)\]
\[\text { Clearly, it is a linear differential equation of the form } \]
\[\frac{dx}{dy} + Px = Q\]
\[\text { where }, \]
\[P = \frac{1}{1 + y^2}\]
\[Q = \frac{e^{\tan^{- 1}} y}{1 + y^2} \]
\[ \therefore I . F . = e^\int P dy \]
\[ = e^\int\frac{1}{1 + y^2} dy \]
\[ = e^{\tan^{- 1}} y \]
\[\text { Multiplying both sides of } \left( 1 \right) by e^{\tan^{- 1}
}y , we get\]
\[ e^{\tan^{- 1}} y \left( \frac{dx}{dy} + \frac{x}{1 + y^2} \right) = e^{\tan^{- 1}} y \frac{e^{\tan^{- 1}} y}{1 + y^2}\]
\[ \Rightarrow e^{\tan^{- 1}} y \frac{dx}{dy} + \frac{x e^{\tan^{- 1}} x}{1 + y^2} = \frac{e^{2 \tan^{- 1} y}}{1 + y^2}\]
\[\text { Integrating both sides with respect to y, we get }\]
\[x e^{\tan^{- 1} } y = \int\frac{e^{2 \tan^{- 1} y}}{1 + y^2} dy + C\]
\[ \Rightarrow x e^{\tan^{- 1} } y = I + C . . . . . \left( 2 \right)\]
\[\text { Here }, \]
\[I = \int\frac{e^{2 \tan^{- 1} y}}{1 + y^2} dy\]
\[\text { Putting } \tan^{- 1} y = t, \text { we get }\]
\[\frac{1}{1 + y^2}dy = dt\]
\[ \therefore I = \int e^{2t} dt\]
\[ = \frac{e^{2t}}{2}\]
\[ = \frac{e^{2 \tan^{- 1} y}}{2}\]
\[\text { Putting the value of I in } \left( 2 \right), \text { we get }\]
\[x e^{\tan^{- 1} }y = \frac{e^{2 \ tan^{- 1} y}}{2} + C\]
\[ \Rightarrow 2x e^{\tan^{- 1} } y = e^{2 \tan^{- 1} y} + 2C\]
\[ \Rightarrow 2x e^{\tan^{- 1} } y = e^{2 \tan^{- 1} y} + k \left( \text { where }k = 2C \right)\]
\[ \Rightarrow 2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + k\]
\[2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + k \]
\[\text { To fiind the particular solution we have to put the values of x and y as 1 and 0 respectively } . \]
\[2 e^{\tan^{- 1} 0} = e^{2 \tan^{- 1} 0} + k\]
\[ \Rightarrow 2 = 1 + k\]
\[ \Rightarrow k = 1\]
\[\text{ So, the particular solution is } 2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + 1 . \]
APPEARS IN
संबंधित प्रश्न
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
\[\frac{dy}{dx} = \left( x + y \right)^2\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`