हिंदी

Find the Particular Solution of the Differential Equation ( 1 + Y 2 ) + ( X − E Tan − 1 Y ) D Y D X = Given that Y = 0 When X = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

उत्तर

We have

\[\left( 1 + y^2 \right) +\left( x - e^{\tan^{- 1} y} \right)\frac{dy}{dx} = 0\]

\[ \Rightarrow \left( x - e^{\tan^{- 1} y} \right)\frac{dy}{dx} = - \left( 1 + y^2 \right)\]

\[ \Rightarrow \frac{dy}{dx} = - \frac{\left( 1 + y^2 \right)}{\left( x - e^{\tan^{- 1} y} \right)}\]

\[ \Rightarrow \frac{dx}{dy} = - \frac{x - e^{\tan^{- 1}} y}{1 + y^2}\]

\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{\tan^{- 1}} y}{1 + y^2} . . . . . \left( 1 \right)\]

\[\text { Clearly, it is a linear differential equation of the form } \]

\[\frac{dx}{dy} + Px = Q\]

\[\text { where }, \]

\[P = \frac{1}{1 + y^2}\]

\[Q = \frac{e^{\tan^{- 1}} y}{1 + y^2} \]

\[ \therefore I . F . = e^\int P dy \]

\[ = e^\int\frac{1}{1 + y^2} dy \]

\[ = e^{\tan^{- 1}} y \]

\[\text { Multiplying both sides of } \left( 1 \right) by e^{\tan^{- 1}
}y , we get\]

\[ e^{\tan^{- 1}} y \left( \frac{dx}{dy} + \frac{x}{1 + y^2} \right) = e^{\tan^{- 1}} y \frac{e^{\tan^{- 1}} y}{1 + y^2}\]

\[ \Rightarrow e^{\tan^{- 1}} y \frac{dx}{dy} + \frac{x e^{\tan^{- 1}} x}{1 + y^2} = \frac{e^{2 \tan^{- 1} y}}{1 + y^2}\]

\[\text { Integrating both sides with respect to y, we get }\]

\[x e^{\tan^{- 1} } y = \int\frac{e^{2 \tan^{- 1} y}}{1 + y^2} dy + C\]

\[ \Rightarrow x e^{\tan^{- 1} } y = I + C . . . . . \left( 2 \right)\]

\[\text { Here }, \]

\[I = \int\frac{e^{2 \tan^{- 1} y}}{1 + y^2} dy\]

\[\text { Putting } \tan^{- 1} y = t, \text { we get }\]

\[\frac{1}{1 + y^2}dy = dt\]

\[ \therefore I = \int e^{2t} dt\]

\[ = \frac{e^{2t}}{2}\]

\[ = \frac{e^{2 \tan^{- 1} y}}{2}\]

\[\text { Putting the value of I in } \left( 2 \right), \text { we get }\]

\[x  e^{\tan^{- 1} }y = \frac{e^{2 \ tan^{- 1} y}}{2} + C\]

\[ \Rightarrow 2x e^{\tan^{- 1} } y = e^{2 \tan^{- 1} y} + 2C\]

\[ \Rightarrow 2x e^{\tan^{- 1} } y = e^{2 \tan^{- 1} y} + k \left( \text { where }k = 2C \right)\]

\[ \Rightarrow 2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + k\]

\[2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + k \]

\[\text { To fiind the particular solution we have to put the values of x and y as 1 and 0 respectively } . \]

\[2 e^{\tan^{- 1} 0} = e^{2 \tan^{- 1} 0} + k\]

\[ \Rightarrow 2 = 1 + k\]

\[ \Rightarrow k = 1\]

\[\text{ So, the particular solution is } 2x e^{\tan^{- 1}} y = e^{2 \tan^{- 1} y} + 1 . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Foreign Set 3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


\[\frac{dy}{dx} = \left( x + y \right)^2\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×