हिंदी

Solve the Following Differential Equation:- X Cos ( Y X ) D Y D X = Y Cos ( Y X ) + X - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]

योग

उत्तर

We have,

\[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{y \cos\left( \frac{y}{x} \right) + x}{x \cos \left( \frac{y}{x} \right)} . . . . . \left( 1 \right)\]

Clearly this is a homogeneous equation,

Putting y = vx

\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]

\[\text{Substituting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}\text{ in (1) we get}\]

\[\frac{dy}{dx} = \frac{y \cos\left( \frac{y}{x} \right) + x}{x \cos \left( \frac{y}{x} \right)}\]

\[ \Rightarrow v + x\frac{dv}{dx} = \frac{vx \cos \left( v \right) + x}{x \cos \left( v \right)}\]

\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v \cos \left( v \right) + 1}{\cos \left( v \right)}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos \left( v \right) + 1}{\cos \left( v \right)} - v\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos \left( v \right) + 1 - v \cos \left( v \right)}{\cos \left( v \right)}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{1}{\cos \left( v \right)}\]

\[ \Rightarrow \cos \left( v \right) dv = \frac{1}{x}dx\]

Integrating both sides, we get

\[\int\cos \left( v \right) dv = \int\frac{1}{x}dx\]

\[ \Rightarrow \sin \left( v \right) = \log \left| x \right| + \log \left| C \right|\]

\[ \Rightarrow \sin \left( \frac{y}{x} \right) = \log \left| Cx \right|\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 66.02 | पृष्ठ १४७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solution of differential equation xdy – ydx = 0 represents : ______.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×