हिंदी

Solve the Following Differential Equation:- Y Dx + (X − Y2) Dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:-

y dx + (x − y2) dy = 0

योग

उत्तर

We have,

\[y dx + \left( x - y^2 \right)dy = 0\]

\[ \Rightarrow y dx = - \left( x - y^2 \right)dy \]

\[ \Rightarrow \frac{dx}{dy} = - \frac{1}{y}\left( x - y^2 \right) \]

\[ \Rightarrow \frac{dx}{dy} + \frac{1}{y}x = y . . . . . . . . \left( 1 \right)\]

Clearly, it is a linear differential equation of the form

\[\frac{dx}{dy} + Px = Q\]

\[\text{where }P = \frac{1}{y}\text{ and }Q = y\]

\[ \therefore I . F . = e^{\int P\ dy} \]

\[ = e^{\int\frac{1}{y}dy} \]

\[ = e^{\log y = y}\]

Multiplying both sides of (1) by I . F . = y, we get

\[y\left( \frac{dx}{dy} + \frac{1}{y}x \right) = y \times y\]

\[ \Rightarrow y\frac{dx}{dy} + x = y^2 \]

Integrating both sides with respect to y, we get

\[xy = \int y^2 dy + C\]

\[ \Rightarrow xy = \frac{y^3}{3} + C\]

\[ \Rightarrow x = \frac{y^2}{3} + \frac{C}{y}\]

\[\text{Hence, }x = \frac{y^2}{3} + \frac{C}{y}\text{ is the required solution.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 66.14 | पृष्ठ १४७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\frac{dy}{dx} + 1 = e^{x + y}\]


\[\frac{dy}{dx} - y \tan x = e^x\]


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


(x3 − 2y3) dx + 3x2 y dy = 0


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


Find the differential equation of all non-horizontal lines in a plane.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


Which of the following differential equations has `y = x` as one of its particular solution?


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×