Advertisements
Advertisements
प्रश्न
Solve the following differential equation:-
y dx + (x − y2) dy = 0
उत्तर
We have,
\[y dx + \left( x - y^2 \right)dy = 0\]
\[ \Rightarrow y dx = - \left( x - y^2 \right)dy \]
\[ \Rightarrow \frac{dx}{dy} = - \frac{1}{y}\left( x - y^2 \right) \]
\[ \Rightarrow \frac{dx}{dy} + \frac{1}{y}x = y . . . . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dx}{dy} + Px = Q\]
\[\text{where }P = \frac{1}{y}\text{ and }Q = y\]
\[ \therefore I . F . = e^{\int P\ dy} \]
\[ = e^{\int\frac{1}{y}dy} \]
\[ = e^{\log y = y}\]
Multiplying both sides of (1) by I . F . = y, we get
\[y\left( \frac{dx}{dy} + \frac{1}{y}x \right) = y \times y\]
\[ \Rightarrow y\frac{dx}{dy} + x = y^2 \]
Integrating both sides with respect to y, we get
\[xy = \int y^2 dy + C\]
\[ \Rightarrow xy = \frac{y^3}{3} + C\]
\[ \Rightarrow x = \frac{y^2}{3} + \frac{C}{y}\]
\[\text{Hence, }x = \frac{y^2}{3} + \frac{C}{y}\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} - y \tan x = e^x\]
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
(x3 − 2y3) dx + 3x2 y dy = 0
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Find the differential equation of all non-horizontal lines in a plane.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
Which of the following differential equations has `y = x` as one of its particular solution?
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.