हिंदी

Find the Particular Solution of the Differential Equation D Y D X = X ( 2 Log X + 1 ) Sin Y + Y Cos Y Given that Y = π 2 When X = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

उत्तर

The given differential equation is \[\frac{dy}{dx} = \frac{x\left( 2\log x + 1 \right)}{\text { sin }y + y\text { cos }y}\]

Separating the variables in equation (1), we get: \[\left( \sin y + y\cos y \right)dy = x\left( 2\log x + 1 \right)dx\]  ...(2)

Integrating both sides of equation (2), we have:

\[\int\left( \sin y + y\cos y \right)dy = \int x\left( 2\log x + 1 \right)dx\] ...(3)

Now, 

\[\int\sin y dy = - \cos y + C\]

\[\in ty\cos y dy = y\sin y + \cos y + C\]  (Using by parts)

∴ \[\int\left( \sin y + y\cos y \right)dy = - \cos y + y\sin y + \cos y + C_1 = y\sin y + C_1\]  ...(4)

\[\text { Let } I = \int\left( 2x\log x + x \right)dx\]                      (using by parts)

\[ = \int2 x\log x dx + \int x dx\]

\[ = 2\left[ \log x\left( \int x dx \right) - \int\left( \frac{d}{dx}\left( \log x \right) . \int x dx \right) dx \right] + \frac{x^2}{2} + C_2 \]

\[ = 2\left[ \log x \times \frac{x^2}{2} - \in t\frac{1}{x} \times \frac{x^2}{2}dx \right] + \frac{x^2}{2} + C_2 \]

\[ = 2\left[ \frac{x^2}{2}\log x - \frac{x^2}{4} \right] + \frac{x^2}{2} + C_2 \]

\[ = x^2 \log x - \frac{x^2}{2} + \frac{x^2}{2} + C_2 \]

\[ = x^2 \log x + C_2 . . . \left( 5 \right) \]

Putting the values in equation (3), we get:

\[y\sin y = x^2 \log x + {C, \text { where } C=C}_2 {-C}_1\]          ...(6)

On putting y = \[\frac{\pi}{2}\] and x = 1 in equation (6), we get:

C = \[\frac{\pi}{2}\]

∴ The particular solution of the given differential equation is

\[y\sin y = x^2 \log x + \frac{\pi}{2}\] .
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Delhi Set 3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


Which of the following differential equations has y = x as one of its particular solution?


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×