Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
उत्तर
The given differential equation is \[\frac{dy}{dx} = \frac{x\left( 2\log x + 1 \right)}{\text { sin }y + y\text { cos }y}\]
Separating the variables in equation (1), we get: \[\left( \sin y + y\cos y \right)dy = x\left( 2\log x + 1 \right)dx\] ...(2)
Integrating both sides of equation (2), we have:
\[\int\left( \sin y + y\cos y \right)dy = \int x\left( 2\log x + 1 \right)dx\] ...(3)
Now,
\[\int\sin y dy = - \cos y + C\]
\[\in ty\cos y dy = y\sin y + \cos y + C\] (Using by parts)
∴ \[\int\left( \sin y + y\cos y \right)dy = - \cos y + y\sin y + \cos y + C_1 = y\sin y + C_1\] ...(4)
\[\text { Let } I = \int\left( 2x\log x + x \right)dx\] (using by parts)
\[ = \int2 x\log x dx + \int x dx\]
\[ = 2\left[ \log x\left( \int x dx \right) - \int\left( \frac{d}{dx}\left( \log x \right) . \int x dx \right) dx \right] + \frac{x^2}{2} + C_2 \]
\[ = 2\left[ \log x \times \frac{x^2}{2} - \in t\frac{1}{x} \times \frac{x^2}{2}dx \right] + \frac{x^2}{2} + C_2 \]
\[ = 2\left[ \frac{x^2}{2}\log x - \frac{x^2}{4} \right] + \frac{x^2}{2} + C_2 \]
\[ = x^2 \log x - \frac{x^2}{2} + \frac{x^2}{2} + C_2 \]
\[ = x^2 \log x + C_2 . . . \left( 5 \right) \]
Putting the values in equation (3), we get:
\[y\sin y = x^2 \log x + {C, \text { where } C=C}_2 {-C}_1\] ...(6)
On putting y = \[\frac{\pi}{2}\] and x = 1 in equation (6), we get:
C = \[\frac{\pi}{2}\]
∴ The particular solution of the given differential equation is
APPEARS IN
संबंधित प्रश्न
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
Which of the following differential equations has y = x as one of its particular solution?
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0