Advertisements
Advertisements
प्रश्न
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
उत्तर
We have,
\[\frac{dy}{dx} + \frac{y}{x} = x^2 \]
\[\Rightarrow \frac{dy}{dx} + \frac{1}{x}y = x^2 \]
\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]
\[P = \frac{1}{x} \]
\[Q = x^2 \]
Now,
\[I . F . = e^{\int\frac{1}{x}dx} \]
\[ = e^{\log\left| x \right|} \]
\[ = x\]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow yx = \int x^3 + C\]
\[ \Rightarrow xy = \frac{x^4}{4} + C\]
APPEARS IN
संबंधित प्रश्न
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
Which of the following differential equations has y = x as one of its particular solution?
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[\frac{dy}{dx} + y = 4x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.