हिंदी

Solve the Following Differential Equation:- D Y D X + Y X = X 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]

योग

उत्तर

We have,

\[\frac{dy}{dx} + \frac{y}{x} = x^2 \]

\[\Rightarrow \frac{dy}{dx} + \frac{1}{x}y = x^2 \]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = \frac{1}{x} \]

\[Q = x^2 \]

Now,

\[I . F . = e^{\int\frac{1}{x}dx} \]

\[ = e^{\log\left| x \right|} \]

\[ = x\]

So, the solution is given by

\[y \times I . F . = \int Q \times I . F . dx + C\]

\[ \Rightarrow yx = \int x^3 + C\]

\[ \Rightarrow xy = \frac{x^4}{4} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 66.08 | पृष्ठ १४७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


Which of the following differential equations has y = x as one of its particular solution?


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\frac{dy}{dx} + y = 4x\]


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×