Advertisements
Advertisements
प्रश्न
Which of the following differential equations has y = x as one of its particular solution?
विकल्प
\[\frac{d^2 y}{d x^2} - x^2 \frac{dy}{dx} + xy = x\]
\[\frac{d^2 y}{d x^2} + x\frac{dy}{dx} + xy = x\]
\[\frac{d^2 y}{d x^2} - x^2 \frac{dy}{dx} + xy = 0\]
\[\frac{d^2 y}{d x^2} + x\frac{dy}{dx} + xy = 0\]
उत्तर
\[\frac{dy}{dx} = 1 . . . . . \left( 2 \right)\]
Differentiating again with respect to x, we get
\[ \Rightarrow \frac{d^2 y}{d x^2} = 0\]
\[ \Rightarrow \frac{d^2 y}{d x^2} + x^2 = x^2 \]
\[ \Rightarrow \frac{d^2 y}{d x^2} + x \times x = x^2 \times 1\]
\[ \Rightarrow \frac{d^2 y}{d x^2} + xy = x^2 \times 1 ............\left[\text{Using }\left( 1 \right) \right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} + xy = x^2 \frac{dy}{dx} .............\left[ \text{Using }\left( 2 \right) \right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} - x^2 \frac{dy}{dx} + xy = 0\]
APPEARS IN
संबंधित प्रश्न
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the differential equation of all non-horizontal lines in a plane.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.