Advertisements
Advertisements
प्रश्न
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
विकल्प
y = `"ce"^((-x^2)/2`
y = `"ce"^((x^2)/2`
y = `(x + "c")"e"^((x^2)/2`
y = `("c" - x)"e"^((x^2)/2`
उत्तर
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is y = `(x + "c")"e"^((x^2)/2`.
Explanation:
The given differential equation is `("d"y)/("d"x) = "e"^(x^2/2) + xy`
⇒ `("d"y)/("d"x) - xy = "e"^((x^2)/2`
Since it is linear differential equation
Where P = –x and Q = `"e"^((x^2)/2`
∴ Integrating factor I.F. = `"e"^(int Pdx)`
= `"e"^(int -x "d"x)`
= `"e"^(- x^2/2)`
So, the solution is `y xx "I"."F". = int "Q" xx "I"."F". "d"x + "c"`
⇒ `y xx "e"^( x^2/2) = int "e"^(x^2/2) "e"^(- x^2/2) "d"x + "c"`
⇒ `y xx "e"^(- x^2/2) = int "e"^0 "d"x + "c"`
⇒ `y xx "e"^(- x^2/2) = int 1 . "d"x + "c"`
⇒ `y xx "e"^(- x^2/2) = x + "c"`
∴ y = `(x + "c")"e"^(x^2/2)`.
APPEARS IN
संबंधित प्रश्न
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Solve the differential equation `cos^2 x dy/dx` + y = tan x
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
x2 dy + (x2 − xy + y2) dx = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The solution of differential equation coty dx = xdy is ______.
Which of the following differential equations has `y = x` as one of its particular solution?
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.