Advertisements
Advertisements
प्रश्न
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
उत्तर
We have,
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Dividing both sides by `x log x,` we get
\[\frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x}\frac{\log x}{x \log x}\]
\[ \Rightarrow \frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x^2}\]
\[ \Rightarrow \frac{dy}{dx} + \left( \frac{1}{x \log x} \right)y = \frac{2}{x^2}\]
\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]
\[P = \frac{1}{x \log x} \]
\[Q = \frac{2}{x^2}\]
Now,
\[I . F . = e^{\int P\ dx} \]
\[ = e^{\int\frac{1}{x \log x}dx} \]
\[ = e^{\log\left| \left( \log x \right) \right|} \]
\[ = \log x\]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow y\log x = 2\int\frac{1}{x^2} \times \log x dx + C\]
\[ \Rightarrow y\log x = I + C . . . . . . . . \left( 1 \right)\]
Where,
\[ \Rightarrow I = 2\log x\int\frac{1}{x^2} dx - 2\int\left[ \frac{d}{dx}\left( \log x \right)\int\frac{1}{x^2} dx \right]dx\]
\[ \Rightarrow I = \frac{- 2}{x}\log x + 2\int\left[ \frac{1}{x^2} \right]dx\]
\[ \Rightarrow I = \frac{- 2}{x}\log x - \frac{2}{x} . . . . . . . . \left( 2 \right)\]
From (1) and (2) we get
\[ \therefore y\log x = \frac{- 2}{x}\log x - \frac{2}{x} + C\]
\[ \Rightarrow y\log x = \frac{- 2}{x}\left( \log x + 1 \right) + C\]
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
If y = etan x+ (log x)tan x then find dy/dx
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + y = 4x\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.