हिंदी

Solve the Following Differential Equation:- X Log X D Y D X + Y = 2 X Log X - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]

योग

उत्तर

We have,

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]

Dividing both sides by `x log x,` we get

\[\frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x}\frac{\log x}{x \log x}\]

\[ \Rightarrow \frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x^2}\]

\[ \Rightarrow \frac{dy}{dx} + \left( \frac{1}{x \log x} \right)y = \frac{2}{x^2}\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = \frac{1}{x \log x} \]

\[Q = \frac{2}{x^2}\]

Now,

\[I . F . = e^{\int P\ dx} \]

\[ = e^{\int\frac{1}{x \log x}dx} \]

\[ = e^{\log\left| \left( \log x \right) \right|} \]

\[ = \log x\]

So, the solution is given by

\[y \times I . F . = \int Q \times I . F . dx + C\]

\[ \Rightarrow y\log x = 2\int\frac{1}{x^2} \times \log x dx + C\]

\[ \Rightarrow y\log x = I + C . . . . . . . . \left( 1 \right)\]

Where,

\[ \Rightarrow I = 2\log x\int\frac{1}{x^2} dx - 2\int\left[ \frac{d}{dx}\left( \log x \right)\int\frac{1}{x^2} dx \right]dx\]

\[ \Rightarrow I = \frac{- 2}{x}\log x + 2\int\left[ \frac{1}{x^2} \right]dx\]

\[ \Rightarrow I = \frac{- 2}{x}\log x - \frac{2}{x} . . . . . . . . \left( 2 \right)\]

From (1) and (2) we get

\[ \therefore y\log x = \frac{- 2}{x}\log x - \frac{2}{x} + C\]

\[ \Rightarrow y\log x = \frac{- 2}{x}\left( \log x + 1 \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 66.11 | पृष्ठ १४७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


If y = etan x+ (log x)tan x then find dy/dx


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The number of arbitrary constants in the particular solution of a differential equation of third order is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\frac{dy}{dx} = \left( x + y \right)^2\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + y = 4x\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The general solution of ex cosy dx – ex siny dy = 0 is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×