Advertisements
Advertisements
प्रश्न
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
विकल्प
\[y e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]
\[y e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]
\[x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]
\[x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]
उत्तर
\[x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]
We have,
\[\frac{dx}{dy} + P_1 x = Q_1\]
Comparing with the equation \[\frac{dx}{dy} + Px = Q\], we get
P = P1
Q = Q1
The general solution of the equation \[\frac{dx}{dy} + Px = Q\] is given by \[x e^{\int Pdy} = \int\left\{ Q e^{\int Pdy} \right\}dy + C\] ...(1)
Putting the value of P and Q in (1), we get
\[x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The number of arbitrary constants in the particular solution of a differential equation of third order is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.