Advertisements
Advertisements
प्रश्न
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
उत्तर
y = P eax + Q ebx
Differentiating w.r.t x, we get:
`dy/dx=Pae^(ax)+Qbe^(bx)..................(1)`
`(a+b)dy/dx=(a+b)(Pae^(ax)+Qbe^(bx))`
`(a+b)dy/dx=Pa^2e^(ax)+Qb^2e^(bx)+ab(Pe^(ax)+Qe^(bx))`
`(a+b)dy/dx=Pa^2e^(ax)+Qb^2e^(bx)+aby`
`-[-(a+b)dy/dx+aby]=Pa^2e^(ax)+Qb^2e^(bx)........(2)`
Differentiating (1) w.r.t. x, we get:
`(d^y)/(dx^2)=Pa^2e^(ax)+Qb^2e^(bx)................(3)`
Subtracting (2) from (3), we get:
`(d^y)/(dx^2)-(a+b)dy/dx+aby=Pa^2e^(ax)+Qb^2e^(bx)-Pa^2e^(ax)-Qb^2e^(bx)`
`(d^y)/(dx^2)-(a+b)dy/dx+aby=0`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The number of arbitrary constants in the particular solution of a differential equation of third order is
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.