हिंदी

If y = P eax + Q ebx, show that dy/dx^2=(a+b)dy/dx + aby=0 - Mathematics

Advertisements
Advertisements

प्रश्न

If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`

उत्तर

y = P eax + Q ebx

Differentiating w.r.t x, we get:

`dy/dx=Pae^(ax)+Qbe^(bx)..................(1)`

`(a+b)dy/dx=(a+b)(Pae^(ax)+Qbe^(bx))`

`(a+b)dy/dx=Pa^2e^(ax)+Qb^2e^(bx)+ab(Pe^(ax)+Qe^(bx))`

`(a+b)dy/dx=Pa^2e^(ax)+Qb^2e^(bx)+aby`

`-[-(a+b)dy/dx+aby]=Pa^2e^(ax)+Qb^2e^(bx)........(2)`

Differentiating (1) w.r.t. x, we get:

`(d^y)/(dx^2)=Pa^2e^(ax)+Qb^2e^(bx)................(3)`

Subtracting (2) from (3), we get:

`(d^y)/(dx^2)-(a+b)dy/dx+aby=Pa^2e^(ax)+Qb^2e^(bx)-Pa^2e^(ax)-Qb^2e^(bx)`

`(d^y)/(dx^2)-(a+b)dy/dx+aby=0`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) All India Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The number of arbitrary constants in the particular solution of a differential equation of third order is


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×