English

If y = P eax + Q ebx, show that dy/dx^2=(a+b)dy/dx + aby=0 - Mathematics

Advertisements
Advertisements

Question

If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`

Solution

y = P eax + Q ebx

Differentiating w.r.t x, we get:

`dy/dx=Pae^(ax)+Qbe^(bx)..................(1)`

`(a+b)dy/dx=(a+b)(Pae^(ax)+Qbe^(bx))`

`(a+b)dy/dx=Pa^2e^(ax)+Qb^2e^(bx)+ab(Pe^(ax)+Qe^(bx))`

`(a+b)dy/dx=Pa^2e^(ax)+Qb^2e^(bx)+aby`

`-[-(a+b)dy/dx+aby]=Pa^2e^(ax)+Qb^2e^(bx)........(2)`

Differentiating (1) w.r.t. x, we get:

`(d^y)/(dx^2)=Pa^2e^(ax)+Qb^2e^(bx)................(3)`

Subtracting (2) from (3), we get:

`(d^y)/(dx^2)-(a+b)dy/dx+aby=Pa^2e^(ax)+Qb^2e^(bx)-Pa^2e^(ax)-Qb^2e^(bx)`

`(d^y)/(dx^2)-(a+b)dy/dx+aby=0`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) All India Set 1

RELATED QUESTIONS

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×