Advertisements
Advertisements
Question
\[\frac{dy}{dx} + 2y = \sin 3x\]
Solution
We have,
\[\frac{dy}{dx} + 2y = \sin 3x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{where }P = 2\text{ and }Q = \sin 3x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int2 dx} \]
\[ = e^{2x} \]
\[\text{Multiplying both sides of (1) by }I.F. = e^{2x},\text{ we get}\]
\[ e^{2x} \left( \frac{dy}{dx} + 2y \right) = e^{2x} \sin 3x \]
\[ \Rightarrow e^{2x} \frac{dy}{dx} + 2 e^{2x} y = e^{2x} \sin 3x\]
Integrating both sides with respect to `x`, we get
\[y e^{2x} = \int e^{2x} \sin 3x dx + C\]
\[ \Rightarrow y e^{2x} = I + C . . . . . \left( 1 \right)\]
\[\text{Where, }I = \int e^{2x} \sin 3x dx . . . . . \left( 2 \right)\]
\[ \Rightarrow I = e^{2x} \int\sin 3x dx - \int\left[ \frac{d e^{2x}}{dx}\int\sin 3x dx \right]dx\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2}{3}\int e^{2x} \cos 3x dx\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2}{3}\left[ e^{2x} \int\cos 3x dx - \int\left( \frac{d e^{2x}}{dx}\int\cos 3x dx \right)dx \right]\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2}{3}\left[ \frac{e^{2x} \sin 3x}{3} - \frac{2}{3}\int e^{2x} \sin 3x dx \right]\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2 e^{2x} \sin 3x}{9} - \frac{4}{9}\int e^{2x} \sin 3x dx\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2 e^{2x} \sin 3x}{9} - \frac{4}{9}I ............\left[\text{Using (2)} \right]\]
\[ \Rightarrow \frac{13I}{9} = - \frac{e^{2x} \cos 3x}{3} + \frac{2 e^{2x} \sin 3x}{9}\]
\[ \Rightarrow I = \frac{9}{13}\left( \frac{2 e^{2x} \sin 3x}{9} - \frac{e^{2x} \cos 3x}{3} \right)\]
\[ \Rightarrow I = \frac{e^{2x}}{13}\left( 2 \sin 3x - 3 \cos 3x \right) . . . . . \left( 3 \right)\]
From (1) and (3), we get
\[y e^{2x} = \frac{e^{2x}}{13}\left( 2 \sin 3x - 3 \cos 3x \right) + C\]
\[ \Rightarrow y = \frac{3}{13}\left( \frac{2}{3}\sin 3x - \cos 3x \right) + C e^{- 2x} \]
\[\text{Hence, }y = \frac{3}{13}\left( \frac{2}{3}\sin 3x - \cos 3x \right) + C e^{- 2x}\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
cos (x + y) dy = dx
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Find the differential equation of all non-horizontal lines in a plane.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.