Advertisements
Advertisements
Question
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
Solution
We have
\[\frac{dy}{dx} = 2^{- y} \]
\[ \Rightarrow \frac{dy}{2^{- y}} = dx\]
\[ \Rightarrow 2^y dy = dx\]
Integrating both sides, we get
\[\int 2^y dy = \int dx\]
\[ \Rightarrow \frac{2^y}{\log2} = x + c\]
\[ \Rightarrow 2^y = x\log2 + k, \text { where } k = c\log2\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The number of arbitrary constants in the particular solution of a differential equation of third order is
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of `"dy"/"dx" + "a"y` = emx
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.