Advertisements
Advertisements
Question
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
Options
x2 + y2 = 12x + C
x2 + y2 = 3x + C
x3 + y3 = 3x + C
x3 + y3 = 12x + C
Solution
x3 + y3 = 12x + C
We have,
\[ x^2 + y^2 \frac{dy}{dx} = 4\]
\[ \Rightarrow y^2 \frac{dy}{dx} = 4 - x^2 \]
\[ \Rightarrow y^2 dy = \left( 4 - x^2 \right)dx\]
Integrating both sides, we get
\[\int y^2 dy = \int\left( 4 - x^2 \right)dx\]
\[ \Rightarrow \frac{y^3}{3} = 4x - \frac{x^3}{3} + D\]
\[ \Rightarrow y^3 = 12x - x^3 + 3D\]
\[ \Rightarrow x^3 + y^3 = 12x + C,\text{ where }C = 3D\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
If y = etan x+ (log x)tan x then find dy/dx
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
cos (x + y) dy = dx
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[\frac{dy}{dx} + 2y = \sin 3x\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.