English

Y Sec 2 X + ( Y + 7 ) Tan X D Y D X = 0 - Mathematics

Advertisements
Advertisements

Question

`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`

Sum

Solution

We have,

\[y \sec^2 x + \left( y + 7 \right)\tan x\frac{dy}{dx} = 0\]

\[ \Rightarrow y \sec^2 x = - \left( y + 7 \right)\tan x\frac{dy}{dx}\]

\[ \Rightarrow \left( \frac{- y - 7}{y} \right)dy = \frac{\sec^2 x}{\tan x}dx\]

\[ \Rightarrow \left( - 1 - \frac{7}{y} \right)dy = \frac{\sec^2 x}{\tan x}dx\]

Integrating both sides, we get

\[\int\left( - 1 - \frac{7}{y} \right)dy = \int\frac{\sec^2 x}{\tan x}dx\]

\[ \Rightarrow - y - 7\log \left| y \right| = \log \left| \tan x \right| + \log C\]

\[ \Rightarrow - y = \log \left| \tan x \right| + \log\left| y^7 \right| + \log C\]

\[ \Rightarrow - y = \log\left| C y^7 \tan x \right|\]

\[ \Rightarrow e^{- y} = C y^7 \tan x\]

\[ \Rightarrow y^7 \tan x = \frac{e^{- y}}{C}\]

\[ \Rightarrow y^7 \tan x = k e^{- y},\text{ where }k = \frac{1}{C}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 146]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 46 | Page 146

RELATED QUESTIONS

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


If y = etan x+ (log x)tan x then find dy/dx


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The number of arbitrary constants in the particular solution of a differential equation of third order is


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


(x2 + 1) dy + (2y − 1) dx = 0


x2 dy + (x2 − xy + y2) dx = 0


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×