Advertisements
Advertisements
Question
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
Options
g (x) + log {1 + y + g (x)} = C
g (x) + log {1 + y − g (x)} = C
g (x) − log {1 + y − g (x)} = C
none of these
Solution
g (x) + log {1 + y − g (x)} = C
We have,
\[\frac{dy}{dx} + y g'\left( x \right) = g\left( x \right)g'\left( x \right) . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = g'\left( x \right)\text{ and }Q = g\left( x \right)g'\left( x \right) . \]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int g'\left( x \right) dx} \]
\[ = e^{g\left( x \right)} \]
Multiplying both sides of (1) by I.F. , we get
\[ e^{g\left( x \right)} \left( \frac{dy}{dx} + yg'\left( x \right) \right) = e^{g\left( x \right)} g\left( x \right)g'\left( x \right)\]
\[ \Rightarrow e^{g\left( x \right)} \frac{dy}{dx} + e^{g\left( x \right)} y g'\left( x \right) = e^{g\left( x \right)} g\left( x \right)g'\left( x \right)\]
Integrating both sides with respect to x, we get
\[y e^{g\left( x \right)} = \int e^{g\left( x \right)} g\left( x \right)g'\left( x \right) dx + K\]
\[ \Rightarrow y e^{g\left( x \right)} = I + K\]
\[ \text{ where }I = \int e^{g\left( x \right)} g\left( x \right)g'\left( x \right) dx\]
Now,
\[I = \int e^{g\left( x \right)} g\left( x \right)g'\left( x \right) dx\]
\[\text{Putting }g\left( x \right) = t, \text{ we get }\]
\[g'\left( x \right) dx = dt\]
\[ = t\int e^t dt - \int\left[ \frac{d}{dx}\left( t \right)\int e^t dt \right]dt\]
\[ = t e^t - e^t \]
\[ = g\left( x \right) e^{g\left( x \right)} - e^{g\left( x \right)} \]
\[ \therefore y e^{g\left( x \right)} = g\left( x \right) e^{g\left( x \right)} - e^{g\left( x \right)} + K\]
\[ \Rightarrow y e^{g\left( x \right)} + e^{g\left( x \right)} - g\left( x \right) e^{g\left( x \right)} = K\]
\[ \Rightarrow y + 1 - g\left( x \right) = K e^{- g\left( x \right)} \]
Taking log on both sides, we get
\[\log\left\{ y + 1 - g\left( x \right) \right\} = - g\left( x \right) + \log K\]
\[ \Rightarrow g\left( x \right) + \log\left\{ 1 + y - g\left( x \right) \right\} = C ...........\left(\text{Where, }C = \log K \right)\]
APPEARS IN
RELATED QUESTIONS
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
x2 dy + (x2 − xy + y2) dx = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Solution of differential equation xdy – ydx = 0 represents : ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.