English

If y(t) is a solution of tdydtt(1+t)dydt-ty = 1 and y(0) = – 1, then show that y(1) = -12. - Mathematics

Advertisements
Advertisements

Question

If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.

Sum

Solution

Given equation is `(1 + "t")"dy"/"dt" - "t"y` = 1

⇒ `"dy"/"dt" - ("t"/(1 + "t")) y = 1/(1 + "t")`

Here, P = `(-"t")/(1 + "t")` and Q = `1/(1 + "t")`

∴ Integrating factor I.F. = `"e"^(intpdt)`

= `"e"^(int (-1)/(1 + "t") "dt")`

= `"e"^(-int (1 + "t" - 1)/(1 + "t") "dt")`

= `"e"^(-int(1 - 1/(1 + "t"))"dt")`

= `"e"^(-["t" - log(1 + "t")])`

= `"e"^(-"t" + log(1 + "t"))`

= `"e"^(-"t") * "e"^(log(1 + "t"))`

∴ I.F. = `"e"^(-"t") * (1 + "t")`

Required solution of the given differential equation is

y . I. F. = `int "Q" . "I"."F". "dt" + "c"`

⇒ `y * "e"^-"t" (1 + "t") = int 1/((1 + "t")) * "e"^-"t" * (1 + "t")  "dt" + "c"`

⇒ `y * "e"^-"t" (1 + "t") = int "e"^-"t"  "dt" + "c"`

⇒ `y * "e"^-"t" (1 + "t") = - "e"^-"t" + "c"`

Put t = 0 and y = –1  ....[∵ y(0) = –1]

⇒ `-1 * "e"^0 * 1 = -"e"^0 + "c"`

⇒ –1 = –1 + c

⇒ c = 0

So the equation becomes

`y"e"^-"t" (1 + "t") = -"e"^-"t"`

Now put t = 1

∴ `y * "e"^-1 (1 + 1) = -"e"^-1`

⇒ 2y = –1

⇒ y = `- 1/2`

Hence y(1) = `-1/2` is verified.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 193]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 12 | Page 193

RELATED QUESTIONS

Find the differential equation representing the curve y = cx + c2.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


cos (x + y) dy = dx


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Which of the following differential equations has `y = x` as one of its particular solution?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×