English

Solve the Following Differential Equation:- D Y D X + ( Sec X ) Y = Tan X - Mathematics

Advertisements
Advertisements

Question

Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]

Sum

Solution

We have,

\[\frac{dy}{dx} + \left( \sec x \right)y = \tan x\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = \sec x\]

\[Q = \tan x\]

Now,

\[I . F . = e^{\int\sec x dx} \]

\[ = e^{\log\left| \left( \sec x + \tan x \right) \right|} \]

\[ = \sec x + \tan x\]

So, the solution is given by

\[y \times I . F = \int Q \times I . F . dx + C\]

\[ \Rightarrow y\left( \sec x + \tan x \right) = \int\left( \sec x + \tan x \right)\tan x + C\]

\[ \Rightarrow y\left( \sec x + \tan x \right) = \int\sec x \times \tan x dx + \int \tan^2 x dx + C\]

\[ \Rightarrow y\left( \sec x + \tan x \right) = \int\sec x \times \tan x dx + \int\left( \sec^2 x - 1 \right) dx + C\]

\[ \Rightarrow y\left( \sec x + \tan x \right) = \sec x + \tan x - x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 147]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 66.09 | Page 147

RELATED QUESTIONS

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The number of arbitrary constants in the particular solution of a differential equation of third order is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} - y \tan x = e^x\]


(x3 − 2y3) dx + 3x2 y dy = 0


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×