Advertisements
Advertisements
Question
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
Options
\[\tan^{- 1} \left( \frac{x}{y} \right) = \log y + C\]
\[\tan^{- 1} \left( \frac{y}{x} \right) = \log x + C\]
\[\tan^{- 1} \left( \frac{x}{y} \right) = \log x + C\]
\[\tan^{- 1} \left( \frac{y}{x} \right) = \log y + C\]
Solution
This is homogenous differential equation.
\[\text{ Let }y = vx\]
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{ Now, putting }\frac{dy}{dx} = v + x\frac{dv}{dx}\text{ and }y = vx\text{ in }\left( 1 \right),\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 + x^2 v + x^2 v^2}{x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = 1 + v + v^2 \]
\[ \Rightarrow x\frac{dv}{dx} = 1 + v^2 \]
\[ \Rightarrow \left( \frac{1}{1 + v^2} \right)dv = \frac{1}{x}dx\]
Integrating both sides we get,
\[\int\frac{1}{1 + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \tan^{- 1} v = \log x + C\]
\[ \Rightarrow \tan^{- 1} \left( \frac{y}{x} \right) = \log x + C\]
APPEARS IN
RELATED QUESTIONS
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.