Advertisements
Advertisements
Question
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Options
z = yn −1
z = yn
z = yn + 1
z = y1 − n
Solution
z = y1 − n
We have,
\[\frac{dy}{dx} + Py = Q y^n \]
\[ \Rightarrow y^{- n} \frac{dy}{dx} + P y^{1 - n} = Q . . . . . \left( 1 \right)\]
\[\text{ Put }z = y^{1 - n} \]
Integrating both sides with respect to x, we get
\[\frac{dz}{dx} = \left( 1 - n \right) y^{- n} \frac{dy}{dx}\]
\[ \Rightarrow y^{- n} \frac{dy}{dx} = \frac{1}{\left( 1 - n \right)}\frac{dz}{dx}\]
\[\text{ Now, }\left( 1 \right)\text{ becomes }\]
\[\frac{1}{\left( 1 - n \right)}\frac{dz}{dx} + Pz = Q\]
\[ \Rightarrow \frac{dz}{dx} + P\left( 1 - n \right)z = Q\left( 1 - n \right)\]
Which is linear form of differential equation .
Therefore, the given differential equation can be reduce to linear form by the substitution, \[z = y^{1 - n}\]
APPEARS IN
RELATED QUESTIONS
Show that y = AeBx is a solution of the differential equation
Verify that y = cx + 2c2 is a solution of the differential equation
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
(1 − x2) dy + xy dx = xy2 dx
x2 dy + y (x + y) dx = 0
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
3x2 dy = (3xy + y2) dx
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
y2 dx + (x2 − xy + y2) dy = 0
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Solve the differential equation `"dy"/"dx" + 2xy` = y
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?