Advertisements
Advertisements
Question
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solution
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 + x^2 v + v^2 x^2}{x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = 1 + v + v^2 \]
\[ \Rightarrow x\frac{dv}{dx} = \left( 1 + v^2 \right)\]
\[ \Rightarrow \frac{1}{1 + v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{1 + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \tan^{- 1} v = \log \left| x \right| + C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \tan^{- 1} \left( \frac{y}{x} \right) = \log \left| x \right| + C\]
\[\text{ Hence, }\tan^{- 1} \left( \frac{y}{x} \right) = \log \left| x \right| + C\text{ is the required solution .}\]
APPEARS IN
RELATED QUESTIONS
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
x cos2 y dx = y cos2 x dy
(x + y) (dx − dy) = dx + dy
y ex/y dx = (xex/y + y) dy
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Solve the following differential equation.
`dy/dx + 2xy = x`
The solution of `dy/ dx` = 1 is ______
Solve:
(x + y) dy = a2 dx
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
The function y = ex is solution ______ of differential equation
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
If `y = log_2 log_2(x)` then `(dy)/(dx)` =