English

Y Ex/Y Dx = (Xex/Y + Y) Dy - Mathematics

Advertisements
Advertisements

Question

y ex/y dx = (xex/y + y) dy

Solution

We have,
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y \right)dy\]
\[ \Rightarrow \frac{dx}{dy} = \frac{x e^\frac{x}{y} + y}{y e^\frac{x}{y}}\]
\[ \Rightarrow \frac{dx}{dy} = \frac{\frac{x}{y} e^\frac{x}{y} + 1}{e^\frac{x}{y}}\]
\[ \Rightarrow \frac{dx}{dy} = \frac{x}{y} + e^\frac{- x}{y} \]
This is a homogeneous differential equation .
\[\text{ Putting }x = vy\text{ and }\frac{dx}{dy} = v + y\frac{dv}{dy},\text{ we get }\]
\[v + y\frac{dv}{dy} = v + e^{- v} \]
\[ \Rightarrow y\frac{dv}{dy} = e^{- v} \]
\[ \Rightarrow e^v dv = \frac{1}{y}dy\]
Integrating both sides, we get
\[\int e^v dv = \int\frac{1}{y}dy\]
\[ \Rightarrow e^v = \log \left| y \right| + C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow e^\frac{x}{y} = \log \left| y \right| + C\]
\[\text{ Hence, }e^\frac{x}{y} = \log \left| y \right| + C\text{ is the required solution }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.09 [Page 83]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.09 | Q 10 | Page 83

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

(1 + x2) dy = xy dx


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

(1 − x2) dy + xy dx = xy2 dx


y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


x2y dx – (x3 + y3) dy = 0


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×