Advertisements
Advertisements
Question
(1 − x2) dy + xy dx = xy2 dx
Solution
We have,
\[\left( 1 - x^2 \right) dy + xy dx = x y^2 dx \]
\[ \Rightarrow \left( 1 - x^2 \right) dy = x y^2 dx - xy dx\]
\[ \Rightarrow \left( 1 - x^2 \right) dy = xy \left( y - 1 \right) dx\]
\[ \Rightarrow \frac{1}{y\left( y - 1 \right)} dy = \frac{x}{1 - x^2}dx\]
Integrating both sides, we get
\[\int\frac{1}{y\left( y - 1 \right)} dy = \int\frac{x}{1 - x^2}dx . . . . . (1)\]
Considering LHS of (1),
\[\text{ Let }\frac{1}{y\left( y - 1 \right)} = \frac{A}{y} + \frac{B}{y - 1}\]
\[ \Rightarrow 1 = A\left( y - 1 \right) + By . . . . . (2) \]
\[\text{ Substituting }y = 1\text{ in }(2), \]
\[1 = B \]
\[\text{ Substituting }y = 0\text{ in }(2), \]
\[1 = - A\]
\[ \Rightarrow A = - 1\]
\[\text{ Substituting the values of A and B in }\frac{1}{y\left( y - 1 \right)} = \frac{A}{y} + \frac{B}{y - 1}, \text{ we get }\]
\[\frac{1}{y\left( y - 1 \right)} = \frac{- 1}{y} + \frac{1}{y - 1}\]
\[ \Rightarrow \int\frac{1}{y\left( y - 1 \right)}dy = \int\frac{- 1}{y}dy + \int\frac{1}{y - 1}dy\]
\[ = - \log \left| y \right| + \log \left| y - 1 \right| + C_1 \]
Now, considering RHS of (2), we have
\[\int\frac{x}{1 - x^2}dx\]
\[\text{ Here, putting }1 - x^2 = t,\text{ we get }\]
\[ - 2x dx = dt\]
\[ \therefore \int\frac{x}{1 - x^2}dx = \frac{- 1}{2}\int\frac{1}{t}dt\]
\[ = \frac{- 1}{2}\log \left| t \right| + C_2 \]
\[ = \frac{- 1}{2}\log \left| 1 - x^2 \right| + C_2 ........\left[ \because t = 1 - x^2 \right]\]
\[\text{ Now, substituting the value of }\int\frac{1}{y\left( y - 1 \right)}dy\text{ and }\int\frac{x}{1 - x^2}dx\text{ in }(1),\text{ we get }\]
\[ - \log \left| y \right| + \log \left| y - 1 \right| + C_1 = \frac{- 1}{2}\log \left| 1 - x^2 \right| + C_2 \]
\[ \Rightarrow - \log \left| y \right| + \log \left| y - 1 \right| = - \frac{1}{2}\log \left| 1 - x^2 \right| + C \]
where
\[C = C_2 - C_1\]
APPEARS IN
RELATED QUESTIONS
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(1 + x2) dy = xy dx
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
y (1 + ex) dy = (y + 1) ex dx
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`