English

Assume that a Rain Drop Evaporates at a Rate Proportional to Its Surface Area. Form a Differential Equation Involving the Rate of Change of the Radius of the Rain Drop. - Mathematics

Advertisements
Advertisements

Question

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 
Sum

Solution

Let the surface area of the raindrop be \[A\]
Thus, the rate of evaporation will be given by \[\frac{dV}{dt}\]
As per the given condition, 
\[\frac{dV}{dt} \propto A\]
\[ \Rightarrow \frac{dV}{dt} = - kA\]
Here, k  is a constant. Also, the negative sign appears when V decreases and t  increases.
Now, \[V = \frac{4}{3}\pi r^3\]
Here, `r` is the radius of the spherical drop.

\[\therefore \frac{d}{dt}\left( \frac{4}{3} \pi r^3 \right) = - k \times 4 \pi r^2 \]

\[ \Rightarrow \frac{4}{3} \times 3\pi r^2 \frac{dr}{dt} = - k \times 4\pi r^2 \]

\[ \Rightarrow \frac{dr}{dt} = - k \]

It is therequired differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.02 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.02 | Q 11 | Page 17

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

(y2 − 2xy) dx = (x2 − 2xy) dy


3x2 dy = (3xy + y2) dx


A population grows at the rate of 5% per year. How long does it take for the population to double?


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Solve the following differential equation.

`dy/dx + y = e ^-x`


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


 `dy/dx = log x`


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×