English

(Y2 − 2xy) Dx = (X2 − 2xy) Dy - Mathematics

Advertisements
Advertisements

Question

(y2 − 2xy) dx = (x2 − 2xy) dy

Sum

Solution

We have, 
\[\left( y^2 - 2xy \right) dx = \left( x^2 - 2xy \right) dy\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y^2 - 2xy}{x^2 - 2xy}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v^2 x^2 - 2v x^2}{x^2 - 2v x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v^2 - 2v}{1 - 2v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{3 v^2 - 3v}{1 - 2v}\]
\[ \Rightarrow \frac{1 - 2v}{3 v^2 - 3v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 - 2v}{3 v^2 - 3v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \int\frac{2v - 1}{3 v^2 - 3v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{3}\int\frac{6v - 3}{3 v^2 - 3v}dv = \int\frac{1}{x}dx\]
\[\text{ Putting }3 v^2 - 3v = t\]
\[ \Rightarrow \left( 6v - 3 \right) dv = dt\]
\[ \therefore - \frac{1}{3}\int\frac{1}{t}dt = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{3}\log \left| t \right| = \log \left| x \right| + \log C\]
Substituting the value of t, we get
\[ - \frac{1}{3}\log \left| 3 v^2 - 3v \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow - \frac{1}{3}\log \left| v^2 - v \right| - \frac{1}{3}\log3 = \log \left| x \right| + \log C\]
\[ \Rightarrow - \frac{1}{3}\log \left| v^2 - v \right| = \log \left| x \right| + \log C - \frac{1}{3}\log3\]
\[ \Rightarrow - \frac{1}{3}\log \left| v^2 - v \right| = \log \left| x \right| + \log C_1 ...........\left(\text{where, }\log C_1 = \log C - \frac{1}{3}\log3 \right)\]
Substituting the value of v, we get
\[ - \frac{1}{3}\log \left| \left( \frac{y}{x} \right)^2 - \left( \frac{y}{x} \right) \right| = \log \left| x \right| + \log C_1 \]
\[ \Rightarrow - \frac{1}{3}\log \left| \frac{y^2}{x^2} - \frac{y}{x} \right| = \log \left| C_1 x \right|\]
\[ \Rightarrow \log \left| \frac{y^2 - xy}{x^2} \right| = - 3\log \left| C_1 x \right|\]
\[ \Rightarrow \log \left| \frac{y^2 - xy}{x^2} \right| = \log \left| \frac{1}{{C_1}^3 x^3} \right|\]
\[ \Rightarrow \frac{y^2 - xy}{x^2} = \frac{1}{{C_1}^3 x^3}\]
\[ \Rightarrow x y^2 - x^2 y = \frac{1}{{C_1}^3}\]
\[ \Rightarrow x^2 y - x y^2 = - \frac{1}{{C_1}^3}\]
\[ \Rightarrow x^2 y - x y^2 = K ...........\left(\text{where, }\log K = - \frac{1}{{C_1}^3} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.09 [Page 83]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.09 | Q 12 | Page 83

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

x cos y dy = (xex log x + ex) dx


\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

(1 − x2) dy + xy dx = xy2 dx


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[xy\frac{dy}{dx} = x^2 - y^2\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


y2 dx + (x2 − xy + y2) dy = 0


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


`xy dy/dx  = x^2 + 2y^2`


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×