Advertisements
Advertisements
Question
Solution
We have,
\[xy\frac{dy}{dx} = x^2 - y^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 - y^2}{xy}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 - v^2 x^2}{v x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 - v^2}{v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - v^2}{v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - 2 v^2}{v}\]
\[ \Rightarrow \frac{v}{1 - 2 v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{v}{1 - 2 v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{- 1}{4}\log \left| 1 - 2 v^2 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| 1 - 2 v^2 \right| = - 4\log \left| x \right| - 4 \log C\]
\[ \Rightarrow \log \left| \left( 1 - 2 v^2 \right)\left( x^4 \right) \right| = \log \frac{1}{C^4}\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \log \left| x^2 \left( x^2 - 2 y^2 \right) \right| = \log \frac{1}{C^4}\]
\[ \Rightarrow x^2 \left( x^2 - 2 y^2 \right) = C_1 \]
where
\[ C_1 = \frac{1}{C^4}\]
\[\text{ Hence, } x^2 \left( x^2 - 2 y^2 \right) = C_1\text{ is the required solution }.\]
APPEARS IN
RELATED QUESTIONS
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
(1 − x2) dy + xy dx = xy2 dx
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
2xy dx + (x2 + 2y2) dy = 0
3x2 dy = (3xy + y2) dx
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`(x + y) dy/dx = 1`
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
Solve the differential equation:
dr = a r dθ − θ dr
Solve:
(x + y) dy = a2 dx
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?