English

2xy Dx + (X2 + 2y2) Dy = 0 - Mathematics

Advertisements
Advertisements

Question

2xy dx + (x2 + 2y2) dy = 0

Solution

\[2xy dx + \left( x^2 + 2 y^2 \right) dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{2xy}{x^2 + 2 y^2}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = - \frac{2v x^2}{x^2 + 2 v^2 x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = - \frac{2v}{1 + 2 v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = - \frac{2v}{1 + 2 v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- 3v - 2 v^3}{1 + 2 v^2}\]
\[ \Rightarrow \frac{1 + 2 v^2}{3v + 2 v^3}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 + 2 v^2}{3v + 2 v^3}dv = - \int\frac{1}{x}dx\]
\[\text{ Substituting }3v + 2 v^3 = t,\text{ we get }\]
\[3\left( 1 + 2 v^2 \right) dv = dt\]
\[ \therefore \frac{1}{3}\int\frac{dt}{t}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{3}\log \left| t \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \frac{1}{3}\log \left| 3v + 2 v^3 \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| 3v + 2 v^3 \right| = - 3 \log \left| x \right| + 3 \log C\]
\[ \Rightarrow \log \left| \left( 3v + 2 v^3 \right) \times x^3 \right| = \log C^3 \]
\[ \Rightarrow \left( 3v + 2 v^3 \right) \times x^3 = C^3 \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \left[ \left( 3 \times \frac{y}{x} + 2 \times \frac{y^3}{x^3} \right) \times x^3 \right] = C^3 \]
\[ \Rightarrow 3y x^2 + 2 y^3 = C_1 \]
\[\text{ Hence, }3y x^2 + 2 y^3 = C_1\text{ is the required solution } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.09 [Page 83]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.09 | Q 13 | Page 83

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} = \sin^2 y\]

(1 + x2) dy = xy dx


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[x\frac{dy}{dx} + y = y^2\]

(ey + 1) cos x dx + ey sin x dy = 0


xy dy = (y − 1) (x + 1) dx


y (1 + ex) dy = (y + 1) ex dx


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


x2 dy + y (x + y) dx = 0


(y2 − 2xy) dx = (x2 − 2xy) dy


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation y1 y3 = y22 is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


Solve the following differential equation.

xdx + 2y dx = 0


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×