Advertisements
Advertisements
Question
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Solution
We have
\[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0 . . . . . \left( 1 \right)\]
\[Now, \]
\[y = e^{- 3x} \]
\[ \Rightarrow \frac{dy}{dx} = - 3 e^{- 3x} \]
\[\Rightarrow\frac{d^2y}{dx^2}=9e^{-3x}\]
\[\text{Putting the values of }\frac{d^2 y}{d x^2}, \frac{dy}{dx}\text{ and y in (1), we get}\]
\[LHS = 9 e^{- 3x} - 3 e^{- 3x} - 6 e^{- 3x} \]
\[ = 0\]
\[ = RHS\]
Thus, y = e−3x is the solution of the given differential equation.
APPEARS IN
RELATED QUESTIONS
Show that y = AeBx is a solution of the differential equation
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
y (1 + ex) dy = (y + 1) ex dx
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`dy/dx = x^2 y + y`
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
`dy/dx + 2xy = x`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve
`dy/dx + 2/ x y = x^2`
`xy dy/dx = x^2 + 2y^2`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve the following differential equation y2dx + (xy + x2) dy = 0
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve the differential equation
`y (dy)/(dx) + x` = 0
Solve the differential equation
`x + y dy/dx` = x2 + y2