Advertisements
Advertisements
Question
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
Solution
Let r be the radius and S be the surface area of the balloon at any time t. Then,
\[S = 4\pi r^2 \]
\[ \Rightarrow \frac{dS}{dt} = 8\pi r \frac{dr}{dt} . . . . . \left( 1 \right)\]
\[\text{ Given: }\hspace{0.167em} \frac{dS}{dt}\alpha t\]
\[ \Rightarrow \frac{dS}{dt} = kt,\text{ where k is any constant }\]
\[\text{ Putting }\frac{dS}{dt} = kt\text{ in }(1), \text{ we get }\]
\[ \Rightarrow kt = 8\pi r \frac{dr}{dt}\]
\[kt dt = 8\pi r dr\]
Integrating both sides, we get
\[\int kt dt = \int8\pi r dr\]
\[ \Rightarrow \frac{k t^2}{2} = 8\pi \times \frac{r^2}{2} + C . . . . . (2)\]
\[\text{ At }t = 0 s, r = 1 \text{ unit and at }t = 3 s, r = 2\text{ units }..............\left(\text{Given} \right)\]
\[ \therefore 0 = 8\pi \times \frac{1}{2} + C\]
\[ \Rightarrow C = - 4\pi\]
And
\[\frac{9}{2}k = 8\pi \times 2 + C\]
\[ \Rightarrow \frac{9}{2}k = 12 \pi\]
\[ \Rightarrow k = \frac{8}{3}\pi\]
Substituting the values of C and k in (2), we get
\[\frac{8 t^2}{6}\pi = 8\pi \times \frac{r^2}{2} - 4\pi\]
\[ \Rightarrow \frac{4 t^2}{3} = 4 r^2 - 4\]
\[ \Rightarrow \frac{t^2}{3} = r^2 - 1\]
\[ \Rightarrow r^2 = 1 + \frac{t^2}{3}\]
\[ \Rightarrow r = \sqrt{1 + \frac{1}{3} t^2}\]
APPEARS IN
RELATED QUESTIONS
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Solve the following differential equation.
`dy/dx + 2xy = x`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
`dy/dx = log x`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
The function y = ex is solution ______ of differential equation
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is