हिंदी

The Surface Area of a Balloon Being Inflated, Changes at a Rate Proportional to Time T. If Initially Its Radius is 1 Unit and After 3 Seconds It is 2 Units, Find the Radius After Time T. - Mathematics

Advertisements
Advertisements

प्रश्न

The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.

योग

उत्तर

Let r be the radius and S be the surface area of the balloon at any time t. Then,
\[S = 4\pi r^2 \]
\[ \Rightarrow \frac{dS}{dt} = 8\pi r \frac{dr}{dt} . . . . . \left( 1 \right)\]
\[\text{ Given: }\hspace{0.167em} \frac{dS}{dt}\alpha t\]
\[ \Rightarrow \frac{dS}{dt} = kt,\text{ where k is any constant }\]
\[\text{ Putting }\frac{dS}{dt} = kt\text{ in }(1), \text{ we get }\]
\[ \Rightarrow kt = 8\pi r \frac{dr}{dt}\]
\[kt dt = 8\pi r dr\]
Integrating both sides, we get
\[\int kt dt = \int8\pi r dr\]
\[ \Rightarrow \frac{k t^2}{2} = 8\pi \times \frac{r^2}{2} + C . . . . . (2)\]
\[\text{ At }t = 0 s, r = 1 \text{ unit and at }t = 3 s, r = 2\text{ units }..............\left(\text{Given} \right)\]
\[ \therefore 0 = 8\pi \times \frac{1}{2} + C\]
\[ \Rightarrow C = - 4\pi\]
And
\[\frac{9}{2}k = 8\pi \times 2 + C\]
\[ \Rightarrow \frac{9}{2}k = 12 \pi\]
\[ \Rightarrow k = \frac{8}{3}\pi\]
Substituting the values of C and k in (2), we get 
\[\frac{8 t^2}{6}\pi = 8\pi \times \frac{r^2}{2} - 4\pi\]
\[ \Rightarrow \frac{4 t^2}{3} = 4 r^2 - 4\]
\[ \Rightarrow \frac{t^2}{3} = r^2 - 1\]
\[ \Rightarrow r^2 = 1 + \frac{t^2}{3}\]
\[ \Rightarrow r = \sqrt{1 + \frac{1}{3} t^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.11 | Q 1 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


\[\frac{dy}{dx} = \left( x + y \right)^2\]

(x2 − y2) dx − 2xy dy = 0


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


y2 dx + (x2 − xy + y2) dy = 0


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`dy/dx + y = e ^-x`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve

`dy/dx + 2/ x y = x^2`


y2 dx + (xy + x2)dy = 0


 `dy/dx = log x`


Solve: `("d"y)/("d"x) + 2/xy` = x2 


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation y2dx + (xy + x2) dy = 0


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×