हिंदी

Solve the Following Initial Value Problem: ( 1 + Y 2 ) D X + ( X − E − Tan − 1 Y ) D X = 0 , Y ( 0 ) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]

योग

उत्तर

We have,
\[\left( 1 + y^2 \right)dx + \left( x - e^{- \tan^{- 1} y} \right)dy = 0\]
\[ \Rightarrow \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = - \left( 1 + y^2 \right)\]
\[ \Rightarrow \left( 1 + y^2 \right)\frac{dx}{dy} = - \left( x - e^{- \tan^{- 1} y} \right)\]
\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{- \tan^{- 1} y}}{1 + y^2} . . . . . . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dx}{dy} + Px = Q\]
\[\text{ where }P = \frac{1}{1 + y^2}\text{ and }Q = \frac{e^{- \tan^{- 1} y}}{1 + y^2}\]
\[ \therefore I.F. = e^{\int P\ dy} \]
\[ = e^{\int\frac{1}{1 + y^2}} dy \]
\[ = e^{tan^{- 1} y} \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = e^{tan^{- 1} y} ,\text{ we get }\]
\[ e^{tan^{- 1} y} \left( \frac{dx}{dy} + \frac{x}{1 + y^2} \right) = e^{tan^{- 1} y} \frac{e^{- \tan^{- 1} y}}{1 + y^2}\]
\[ \Rightarrow e^{tan^{- 1} y} \left( \frac{dx}{dy} + \frac{x}{1 + y^2} \right) = \frac{1}{1 + y^2}\]
Integrating both sides with respect to y, we get
\[ e^{tan^{- 1} y} x = \int\frac{1}{1 + y^2} dy + C\]
\[ \Rightarrow x e^{tan^{- 1} y} = \tan^{- 1} y + C . . . . . \left( 2 \right)\]
Now, 
\[y\left( 0 \right) = 0\]
\[ \therefore 0 \times e^0 = 0 + C\]
\[ \Rightarrow C = 0\]
\[\text{Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[x e^{tan^{- 1} y} = \tan^{- 1} y + 0\]
\[ \Rightarrow x e^{tan^{- 1} y} = \tan^{- 1} y\]
\[\text{ Hence, }x e^{tan^{- 1} y} = \tan^{- 1} y\text{ is the required solution.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.10 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.10 | Q 37.05 | पृष्ठ १०७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

xy (y + 1) dy = (x2 + 1) dx


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

(x2 − y2) dx − 2xy dy = 0


\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve:

(x + y) dy = a2 dx


 `dy/dx = log x`


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the following differential equation y2dx + (xy + x2) dy = 0


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×