हिंदी

The Population of a City Increases at a Rate Proportional to the Number of Inhabitants Present at Any Time T - Mathematics

Advertisements
Advertisements

प्रश्न

The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?

योग

उत्तर

Let the population at any time t be P.
Given:- \[\frac{dP}{dt} \alpha P\]

\[\Rightarrow \frac{dP}{dt} = \beta P\]

\[ \Rightarrow \frac{dP}{P} = \beta dt\]

\[ \Rightarrow \log\left| P \right| = \beta t + \log C . . . . . . . . \left( 1 \right)\]

Now, 

\[\text{ At }t = 1990, P = 200000\text{ and at }t = 2000, P = 250000\]

\[ \therefore \log 200000 = 1990\beta + \log C . . . . . . . . \left( 2 \right) \]

\[ \log 250000 = 2000\beta + \log C . . . . . . . . . \left( 3 \right)\]

\[\text{ Subtracting }\left( 3 \right)\text{ from }\left( 2 \right), \text{ we get }\]

\[\log 200000 - \log 250000 = 10\beta\]

\[ \Rightarrow \beta = \frac{1}{10}\log\left( \frac{5}{4} \right)\]

\[\text{ Putting }\beta = \frac{1}{10}\log \left( \frac{5}{4} \right) \text{ in }\left( 2 \right),\text{ we get }\]

\[\log 200000 = 1990 \times \frac{1}{10}\log\left( \frac{5}{4} \right) + \log C\]

\[ \Rightarrow \log 200000 = 199\log\left( \frac{5}{4} \right) + \log C \]

\[ \Rightarrow \log C = \log 200000 - 199\log\left( \frac{5}{4} \right) \]

\[\text{ Putting }\beta = \frac{1}{10}\log \left( \frac{5}{4} \right), \log C = \log 200000 - 199 \log\left( \frac{5}{4} \right) \text{ and }t = 2010\text{ in }\left( 1 \right),\text{ we get }\]

\[\log\left| P \right| = \frac{1}{10} \times 2010\log \left( \frac{5}{4} \right) + \log 200000 - 199 \log\left( \frac{5}{4} \right)\]

\[ \Rightarrow \log\left| P \right| = 201 \log \left( \frac{5}{4} \right) + \log 200000 - 199\log\left( \frac{5}{4} \right)\]

\[ \Rightarrow \log\left| P \right| = \log \left( \frac{5}{4} \right)^{201} - \log \left( \frac{5}{4} \right)^{199} + \log 200000\]

\[ \Rightarrow \log\left| P \right| = \log\left\{ \left( \frac{5}{4} \right)^{201} \left( \frac{4}{5} \right)^{199} \right\} + \log 200000\]

\[ \Rightarrow \log\left| P \right| = \log\left\{ \left( \frac{5}{4} \right)^2 \right\} + \log 200000\]

\[ \Rightarrow \log\left| P \right| = \log\left( \frac{25}{16} \times 200000 \right)\]

\[ \Rightarrow \log\left| P \right| = \log 312500\]

\[ \Rightarrow P = 312500\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.11 | Q 7 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} = x \log x\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The solution of the differential equation y1 y3 = y22 is


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


The solution of `dy/dx + x^2/y^2 = 0` is ______


Solve the differential equation:

`e^(dy/dx) = x`


x2y dx – (x3 + y3) dy = 0


 `dy/dx = log x`


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve: ydx – xdy = x2ydx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×