हिंदी

D Y D X − X Sin 2 X = 1 X Log X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]
योग

उत्तर

We have, 
\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x\log x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x\log x} + x \sin^2 x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x\log x} + \frac{x}{2}\left( 1 - \cos 2x \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x\log x} + \frac{x}{2} - \frac{x}{2}\cos 2x\]
\[ \Rightarrow dy = \left[ \frac{1}{x\log x} + \frac{x}{2} - \frac{x}{2}\cos 2x \right]dx\]
Integrating both sides, we get
\[\int dy = \int\left[ \frac{1}{x\log x} + \frac{x}{2} - \frac{x}{2}\cos 2x \right]dx\]
\[ \Rightarrow y = \int\frac{1}{x\log x}dx + \frac{1}{2}\int x dx - \frac{1}{2}\int\left( x \cos 2x \right)dx\]
\[ \Rightarrow y = \log\left| \log x \right| + \frac{1}{2} \times \frac{x^2}{2} - \frac{1}{2}\int x_I \times \cos_{II} 2x dx \]
\[ \Rightarrow y = \log\left| \log x \right| + \frac{x^2}{4} - \frac{x}{2}\int\left( \cos 2x \right)dx + \frac{1}{2}\int\left[ \frac{d}{dx}\left( x \right)\int\left( \cos 2x \right) dx \right]dx\]
\[ \Rightarrow y = \log\left| \log x \right| + \frac{x^2}{4} - \frac{x\sin 2x}{4} - \frac{\cos 2x}{8} + C\]
\[\text{ Hence, }y = \log\left| \log x \right| + \frac{x^2}{4} - \frac{x\sin 2x}{4} - \frac{\cos 2x}{8} +\text{ C is the solution to the given differential equation.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.05 | Q 12 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\sqrt{a + x} dy + x\ dx = 0\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\frac{dy}{dx} = 1 - x + y - xy\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


x2 dy + y (x + y) dx = 0


\[xy\frac{dy}{dx} = x^2 - y^2\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


(y2 − 2xy) dx = (x2 − 2xy) dy


2xy dx + (x2 + 2y2) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

`(x + y) dy/dx = 1`


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×