Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = 1 - x + y - xy\]
\[ \Rightarrow \frac{dy}{dx} = 1 + y - x\left( 1 + y \right)\]
\[ \Rightarrow \frac{dy}{dx} = \left( 1 + y \right)\left( 1 - x \right)\]
\[ \Rightarrow \frac{1}{1 + y}dy = \left( 1 - x \right) dx\]
Integrating both sides, we get
\[\int\frac{1}{1 + y}dy = \int\left( 1 - x \right) dx\]
\[ \Rightarrow \log \left| 1 + y \right| = x - \frac{x^2}{2} + C\]
\[\text{ Hence, }\log \left| 1 + y \right| = x - \frac{x^2}{2} +\text{ C is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that y = cx + 2c2 is a solution of the differential equation
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
(y + xy) dx + (x − xy2) dy = 0
dy + (x + 1) (y + 1) dx = 0
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
(x + y) (dx − dy) = dx + dy
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
y2 dx + (x2 − xy + y2) dy = 0
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
y dx – x dy + log x dx = 0
Solve the differential equation xdx + 2ydy = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation y2dx + (xy + x2) dy = 0
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.