Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]
\[ \Rightarrow \frac{dx}{dy} = \frac{1 + \cos 2y}{1 - \cos 2y}\]
\[ \Rightarrow dx = \frac{1 + \cos 2y}{1 - \cos 2y}dy\]
\[ \Rightarrow dx = \frac{2 \cos^2 y}{2 \sin^2 y}dy\]
\[ \Rightarrow dx = \cot^2 y\ dy\]
Integrating both sides, we get
\[ \Rightarrow \int dx = \int \cot^2 y\ dy\]
\[ \Rightarrow x = \int\left( {cosec}^2 y - 1 \right) dy\]
\[ \Rightarrow x = \int {cosec}^2 y dy - \int dy\]
\[ \Rightarrow x = - \cot y - y + C\]
\[ \Rightarrow x + \cot y + y = C\]
\[\text{Hence, }x + \cot y + y =\text{C is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
x cos y dy = (xex log x + ex) dx
x cos2 y dx = y cos2 x dy
(y2 + 1) dx − (x2 + 1) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Define a differential equation.
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
The solution of `dy/ dx` = 1 is ______
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solve the differential equation `"dy"/"dx" + 2xy` = y
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
If `y = log_2 log_2(x)` then `(dy)/(dx)` =