English

D Y D X = 1 − Cos 2 Y 1 + Cos 2 Y - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]
Sum

Solution

We have,
\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]
\[ \Rightarrow \frac{dx}{dy} = \frac{1 + \cos 2y}{1 - \cos 2y}\]
\[ \Rightarrow dx = \frac{1 + \cos 2y}{1 - \cos 2y}dy\]
\[ \Rightarrow dx = \frac{2 \cos^2 y}{2 \sin^2 y}dy\]
\[ \Rightarrow dx = \cot^2 y\ dy\]
Integrating both sides, we get
\[ \Rightarrow \int dx = \int \cot^2 y\ dy\]
\[ \Rightarrow x = \int\left( {cosec}^2 y - 1 \right) dy\]
\[ \Rightarrow x = \int {cosec}^2 y dy - \int dy\]
\[ \Rightarrow x = - \cot y - y + C\]
\[ \Rightarrow x + \cot y + y = C\]
\[\text{Hence, }x + \cot y + y =\text{C is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.06 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.06 | Q 4 | Page 38

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{dy}{dx} = \log x\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

xy (y + 1) dy = (x2 + 1) dx


xy dy = (y − 1) (x + 1) dx


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

3x2 dy = (3xy + y2) dx


(x + 2y) dx − (2x − y) dy = 0


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


The differential equation satisfied by ax2 + by2 = 1 is


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Solve the following differential equation.

`dy/dx = x^2 y + y`


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


`xy dy/dx  = x^2 + 2y^2`


Solve the differential equation xdx + 2ydy = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×