Advertisements
Advertisements
Question
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Solution
We have,
\[A x^2 + B y^2 = 1.............(1)\]
Differentiating both sides of (1) with respect to x, we get
\[2Ax + 2By\frac{dy}{dx} = 0 ...........(2)\]
Differentiating both sides of (2) with respect to x, we get
\[2A + 2B \left( \frac{dy}{dx} \right)^2 + 2By\frac{d^2 y}{d x^2} = 0\]
\[ \Rightarrow 2B\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] = - 2A\]
\[ \Rightarrow \left[ y\frac{dy}{dx} + \left( \frac{dy}{dx} \right)^2 \right] = - \frac{2A}{2B}\]
\[ \Rightarrow \left[ y\frac{dy}{dx} + \left( \frac{dy}{dx} \right)^2 \right] = - \left( - \frac{y}{x}\frac{dy}{dx} \right) ...........\left[\text{Using (2)}\right]\]
\[ \Rightarrow x\left[ y\frac{dy}{dx} + \left( \frac{dy}{dx} \right)^2 \right] = y\frac{dy}{dx}\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
RELATED QUESTIONS
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Define a differential equation.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Solve: ydx – xdy = x2ydx.