Advertisements
Advertisements
Question
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Solution
Given:
\[\left( 1 - y^2 \right)\left( 1 + \log x \right)dx + 2xydy = 0\]
\[ \Rightarrow \left( 1 - y^2 \right)\left( 1 + \log x \right)dx = - 2xydy\]
\[ \Rightarrow \left( \frac{1 + \log x}{2x} \right)dx = - \left( \frac{y}{1 - y^2} \right)dy . . . . . \left( 1 \right)\]
Let:
\[1 + \log x = t \]
and
\[\left( 1 - y^2 \right) = p\]
\[ \Rightarrow \frac{1}{x}dx = dt\text{ and }- 2ydy = dp\]
\[\text{ Therefore, }\left( 1 \right)\text{ becomes }\]
\[\int\frac{t}{2}dt = \int\frac{1}{2p}dp\]
\[ \Rightarrow \frac{t^2}{4} = \frac{\log p}{2} + C . . . . . \left( 2 \right)\]
\[\text{ Substituting the values of t and p in }\left( 2 \right), \text{ we get }\]
\[\frac{\left( 1 + \log x \right)^2}{4} = \frac{\log\left( 1 - y^2 \right)}{2} + C . . . . . \left( 3 \right)\]
\[\text{ At }x = 1 \text{ and }y = 0, \left( 3 \right)\text{ becomes }\]
\[C = \frac{1}{4}\]
\[\text{ Substituting the value of C in }\left( 3 \right),\text{ we get }\]
\[\frac{\left( 1 + \log x \right)^2}{4} = \frac{\log\left( 1 - y^2 \right)}{2} + \frac{1}{4}\]
\[ \Rightarrow \left( 1 + \log x \right)^2 = 2\log\left( 1 - y^2 \right) + 1\]
Or
\[ \left( \log x \right)^2 + \log x^2 = \log \left( 1 - y^2 \right)^2 \]
It is the required particular solution .
APPEARS IN
RELATED QUESTIONS
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
(sin x + cos x) dy + (cos x − sin x) dx = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
(x2 − y2) dx − 2xy dy = 0
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`dy/dx + 2xy = x`
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
y dx – x dy + log x dx = 0
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.