English

Find the Particular Solution of the Differential Equation (1 – Y2) (1 + Log X) Dx + 2xy Dy = 0, Given that Y = 0 When X = 1. - Mathematics

Advertisements
Advertisements

Question

Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.

Solution

Given:
\[\left( 1 - y^2 \right)\left( 1 + \log x \right)dx + 2xydy = 0\]

\[ \Rightarrow \left( 1 - y^2 \right)\left( 1 + \log x \right)dx = - 2xydy\]

\[ \Rightarrow \left( \frac{1 + \log x}{2x} \right)dx = - \left( \frac{y}{1 - y^2} \right)dy . . . . . \left( 1 \right)\]

Let: 

\[1 + \log x = t \]

and 

\[\left( 1 - y^2 \right) = p\]

\[ \Rightarrow \frac{1}{x}dx = dt\text{ and }- 2ydy = dp\]

\[\text{ Therefore, }\left( 1 \right)\text{ becomes }\]
\[\int\frac{t}{2}dt = \int\frac{1}{2p}dp\]
\[ \Rightarrow \frac{t^2}{4} = \frac{\log p}{2} + C . . . . . \left( 2 \right)\]
\[\text{ Substituting the values of t and p in }\left( 2 \right), \text{ we get }\]
\[\frac{\left( 1 + \log x \right)^2}{4} = \frac{\log\left( 1 - y^2 \right)}{2} + C . . . . . \left( 3 \right)\]
\[\text{ At }x = 1 \text{ and }y = 0, \left( 3 \right)\text{ becomes }\]
\[C = \frac{1}{4}\]
\[\text{ Substituting the value of C in }\left( 3 \right),\text{ we get }\]
\[\frac{\left( 1 + \log x \right)^2}{4} = \frac{\log\left( 1 - y^2 \right)}{2} + \frac{1}{4}\]
\[ \Rightarrow \left( 1 + \log x \right)^2 = 2\log\left( 1 - y^2 \right) + 1\]
Or 
\[ \left( \log x \right)^2 + \log x^2 = \log \left( 1 - y^2 \right)^2 \]
It is the required particular solution .

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 59 | Page 57

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\sqrt{1 - x^4} dy = x\ dx\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[5\frac{dy}{dx} = e^x y^4\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

(x2 − y2) dx − 2xy dy = 0


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`dy/dx + 2xy = x`


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


y dx – x dy + log x dx = 0


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×