Advertisements
Advertisements
Question
Solution
We have,
\[\sqrt{1 - x^4}dy = x\ dx\]
\[ \Rightarrow dy = \frac{x}{\sqrt{1 - x^4}}dx\]
Integrating both sides, we get
\[\int dy = \int\frac{x}{\sqrt{1 - x^4}}dx\]
\[ \Rightarrow y = \int\frac{x}{\sqrt{1 - x^4}}dx\]
\[\text{ Putting }x^2 = t\]
\[ \Rightarrow 2x\ dx = dt\]
\[ \therefore y = \frac{1}{2}\int\frac{dt}{\sqrt{1 - t^2}}\]
\[ = \frac{\sin^{- 1} t}{2} + C\]
\[ = \frac{1}{2} \sin^{- 1} \left( x^2 \right) + C\]
\[\text{ Hence, }y = \frac{1}{2} \sin^{- 1} \left( x^2 \right) +\text{C is the solution to the given differential equation.}\]
APPEARS IN
RELATED QUESTIONS
Verify that y = cx + 2c2 is a solution of the differential equation
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
(ey + 1) cos x dx + ey sin x dy = 0
(y + xy) dx + (x − xy2) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
y2 dx + (xy + x2)dy = 0
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
The function y = ex is solution ______ of differential equation
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx