English

D Y D X = Cos 3 X Sin 2 X + X √ 2 X + 1 - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]
Sum

Solution

We have,
\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]
\[ \Rightarrow dy = \left( \cos^3 x \sin^2 x + x\sqrt{2x + 1} \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( \cos^3 x \sin^2 x + x\sqrt{2x + 1} \right)dx\]
\[ \Rightarrow y = \int \cos^3 x \sin^2 x dx + \int x\sqrt{2x + 1}dx \]
\[ \Rightarrow y = I_1 + I_2 . . . . . \left( 1 \right)\]
where 
\[ I_1 = \int \cos^3 x \sin^2 x dx \]
\[ I_2 = \int x\sqrt{2x + 1}dx\]
Now,
\[ I_1 = \int \cos^3 x \sin^2 x dx\]
\[ = \int \sin^2 x \left( 1 - \sin^2 x \right)\cos x dx\]
\[\text{Putting }t = \sin x,\text{ we get }\]
\[dt = \cos x dx\] 
\[ \Rightarrow I_1 = \int t^2 \left( 1 - t^2 \right)dt\]
\[ = \int\left( t^2 - t^4 \right)dt\]
\[ = \frac{t^3}{3} - \frac{t^5}{5} + C_1 \]
\[ = \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C_1 \]
\[ I_2 = \int x\sqrt{2x + 1}dx\]
\[\text{Putting }t^2 = 2x + 1, \text{ we get }\]
\[2t dt = 2dx\]
\[ \Rightarrow tdt = dx\]
Now,
\[ I_2 = \int\left( \frac{t^2 - 1}{2} \right)t \times t dt\]
\[ = \frac{1}{2}\int\left( t^4 - t^2 \right) dt\]
\[ = \frac{t^5}{10} - \frac{t^3}{6} + C_2 \]
\[ = \frac{\left( 2x + 1 \right)^\frac{5}{2}}{10} - \frac{\left( 2x + 1 \right)^\frac{3}{2}}{6} + C_2\]
\[\text{Putting the values of }I_1\text{ and }I_2 \text{ in }\left( 1 \right), \text{ we get }\]
\[y = \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C_1 + \frac{\left( 2x + 1 \right)^\frac{5}{2}}{10} - \frac{\left( 2x + 1 \right)^\frac{3}{2}}{6} + C_2 \]
\[y = \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + \frac{\left( 2x + 1 \right)^\frac{5}{2}}{10} - \frac{\left( 2x + 1 \right)^\frac{3}{2}}{6} + C ...............\left( \text{Where, } C = C_1 + C_2 \right)\]
\[\text{ Hence, }y = \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + \frac{\left( 2x + 1 \right)^\frac{5}{2}}{10} - \frac{\left( 2x + 1 \right)^\frac{3}{2}}{6} +\text{ C is the solution to the given differential equation.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.05 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.05 | Q 10 | Page 34

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} = \sin^2 y\]

\[x\frac{dy}{dx} + y = y^2\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

tan y dx + sec2 y tan x dy = 0


\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

(y2 − 2xy) dx = (x2 − 2xy) dy


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Choose the correct alternative.

The solution of `x dy/dx = y` log y is


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve: ydx – xdy = x2ydx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×