Advertisements
Advertisements
Question
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Solution
We have,
\[x\frac{dy}{dx} + y = x \cos x + \sin x\]
\[ \Rightarrow \frac{dy}{dx} + \frac{1}{x}y = \cos x + \frac{\sin x}{x} . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = \tan x\text{ and }Q = x^2 \cot x + 2x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\frac{1}{x}dx} \]
\[ = e^{log x} = x\]
\[\text{ Multiplying both sides of (1) by I . F . }= x,\text{ we get }\]
\[x\left( \frac{dy}{dx} + \frac{1}{x}y \right) = x\left( \cos x + \frac{\sin x}{x} \right)\]
\[ \Rightarrow x\left( \frac{dy}{dx} + \frac{1}{x}y \right) = x \cos x + \sin x\]
Integrating both sides with respect to x, we get
\[xy = \int x \cos x dx + \int\sin x dx + C\]
\[ \Rightarrow xy = \left[ x \sin x - \int1\left( \sin x \right)dx \right] - \cos x + C\]
\[ \Rightarrow xy = x \sin x + \cos x - \cos x + C\]
\[ \Rightarrow xy = x \sin x + C . . . . . \left( 2 \right)\]
Now,
\[y\left( \frac{\pi}{2} \right) = 1\]
\[ \therefore 1 \times \frac{\pi}{2} = \frac{\pi}{2}\sin\frac{\pi}{2} + C\]
\[ \Rightarrow C = 0\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[xy = x \sin x\]
\[ \Rightarrow y = \sin x\]
\[\text{ Hence, }y = \sin x\text{ is the required solution .}\]
APPEARS IN
RELATED QUESTIONS
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
(sin x + cos x) dy + (cos x − sin x) dx = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Solve
`dy/dx + 2/ x y = x^2`
x2y dx – (x3 + y3) dy = 0
`xy dy/dx = x^2 + 2y^2`
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: