Advertisements
Advertisements
Question
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solution
sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x` + `(sec^2y)/tany "d"y` = 0
Integrating, we get
`int (sec^2x)/tanx "d"x` + `int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
log |tan x| + `log |tan y|` = log c
∴ log |tan x . tan y| = log c
∴ tan x . tan y = c
This is the general solution.
APPEARS IN
RELATED QUESTIONS
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
x2y dx – (x3 + y3) dy = 0
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Solve the differential equation `"dy"/"dx" + 2xy` = y