English

Solve the differential equation dydxdydx+2xy = y - Mathematics

Advertisements
Advertisements

Question

Solve the differential equation `"dy"/"dx" + 2xy` = y

Sum

Solution

Given equation is `"dy"/"dx" + 2xy` = y.

⇒ `"dy"/"dx"` = y – xy

⇒ `"dy"/"dx"` = y(1 –2x)

⇒ `"dy"/y` = (1 –2x)dx

Integrating both sides, we have

`int "dy"/"dx" = int (1 - 2x)"d"x`

⇒ log y = x – x2 + log c

⇒ log y – log c = x – x2

⇒ `log  y/"c"` = x – x2

⇒ `y/"c" = "e"^(x - x^2)`

∴ y = `"c" . "e"^(x - x^2)` 

Hence, the required solution is y = `"c" . "e"^(x - x^2)` .

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 193]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 5 | Page 193

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

x2 dy + y (x + y) dx = 0


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Form the differential equation from the relation x2 + 4y2 = 4b2


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×