Advertisements
Advertisements
Question
Solution
\[ \frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{1}{y}dy = 2x dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int2x dx\]
\[\log \left| y \right| = x^2 + C . . . . . (1)\]
\[\text{We know that at }x = 0, y = 1 . \]
Substituting the values of x and y in (1), we get
\[0 = 0 + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get
\[\log \left| y \right| = x^2 \]
\[ \Rightarrow y = e^{x^2} \]
\[\text{ Hence, }y = e^{x^2}\text{ is the required solution }. \]
APPEARS IN
RELATED QUESTIONS
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
x cos2 y dx = y cos2 x dy
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve the differential equation:
dr = a r dθ − θ dr
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the following differential equation y2dx + (xy + x2) dy = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
If `y = log_2 log_2(x)` then `(dy)/(dx)` =
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is