English

D Y D X = 2 X Y , Y ( 0 ) = 1 - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Solution

\[ \frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{1}{y}dy = 2x dx\]
Integrating both sides, we get 
\[\int\frac{1}{y}dy = \int2x dx\]
\[\log \left| y \right| = x^2 + C . . . . . (1)\]
\[\text{We know that at }x = 0, y = 1 . \]
Substituting the values of x and y in (1), we get
\[0 = 0 + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get 
\[\log \left| y \right| = x^2 \]
\[ \Rightarrow y = e^{x^2} \]
\[\text{ Hence, }y = e^{x^2}\text{ is the required solution }. \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 45.5 | Page 56

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

x cos2 y  dx = y cos2 x dy


\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Solve the differential equation:

dr = a r dθ − θ dr


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Solve the following differential equation y2dx + (xy + x2) dy = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×